!! You will need to go to http://www.realtor.com/homesforrent/94544/type-house-rentals? pgsz=50&ml=3and search !! look at the value of property on the market. What the restroom and bedroom how many of it. we look at lease market !! This have 59 result .. that you need to enter it excel and make it look like the research on the example that i attach in here … ! ! – It should have ! ! ! data sources ! ! – methodology – semi log form ! ! – result – minimum price .. median price . and maximum price in city ! ! Area map of the area ! ! – table of the result ! ! – original data ! ! – the descriptive statistic! ! – Type and Lot Size do not need to enter it … !! ! !
hedonic data
Hedonic Regression Example |
|
|
|
|
|
|
|
|
omitted Bed2, Bath1, Strutype for Multi |
Price |
lnPrice |
Bed0 |
Bed1 |
Bed3 |
Bedge4 |
Bath15 |
Bath2 |
Bath3 |
Sqft |
Age |
AgeSq |
Strutype |
115000 |
11.6526874073 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
650 |
63 |
3969 |
0 |
120000 |
11.6952470218 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
684 |
62 |
3844 |
0 |
133000 |
11.7981044072 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
718 |
61 |
3721 |
0 |
138575 |
11.8391669743 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
752 |
60 |
3600 |
0 |
144150 |
11.8786097031 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
884 |
59 |
3481 |
1 |
149725 |
11.9165555571 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
918 |
58 |
3364 |
1 |
205575 |
12.2335662098 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
952 |
57 |
3249 |
1 |
211150 |
12.2603240604 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
986 |
56 |
3136 |
1 |
216725 |
12.2863845477 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1020 |
55 |
3025 |
1 |
222300 |
12.3117831 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1054 |
54 |
2916 |
1 |
227875 |
12.336552512 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1088 |
53 |
2809 |
1 |
233450 |
12.3607232004 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1122 |
52 |
2704 |
1 |
239025 |
12.384323428 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1156 |
51 |
2601 |
1 |
244600 |
12.4073795022 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1190 |
50 |
2500 |
0 |
250175 |
12.429915952 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1224 |
49 |
2401 |
0 |
305575 |
12.6299505266 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1258 |
48 |
2304 |
0 |
311150 |
12.64803039 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1292 |
47 |
2209 |
0 |
316725 |
12.6657891685 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1326 |
46 |
2116 |
0 |
322300 |
12.6832380678 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1360 |
45 |
2025 |
0 |
327875 |
12.7003877172 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1394 |
44 |
1936 |
0 |
333450 |
12.7172482081 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1428 |
43 |
1849 |
1 |
339025 |
12.73382913 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1462 |
42 |
1764 |
1 |
344600 |
12.7501396031 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1496 |
41 |
1681 |
1 |
350175 |
12.7661883085 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1530 |
40 |
1600 |
1 |
355750 |
12.781983516 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1564 |
39 |
1521 |
1 |
361325 |
12.7975331093 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1598 |
38 |
1444 |
1 |
366900 |
12.8128446103 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1632 |
37 |
1369 |
1 |
372475 |
12.8279252005 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1666 |
36 |
1296 |
1 |
378050 |
12.842781741 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1700 |
35 |
1225 |
1 |
383625 |
12.8574207919 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1734 |
34 |
1156 |
1 |
389200 |
12.8718486293 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1768 |
33 |
1089 |
1 |
394775 |
12.8860712613 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1802 |
32 |
1024 |
1 |
455575 |
13.0293156364 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1836 |
31 |
961 |
1 |
461150 |
13.0414786487 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1870 |
30 |
900 |
1 |
466725 |
13.0534954981 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1904 |
29 |
841 |
1 |
472300 |
13.0653696559 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1938 |
28 |
784 |
1 |
477875 |
13.077104471 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1972 |
27 |
729 |
1 |
483450 |
13.0887031759 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2006 |
26 |
676 |
1 |
489025 |
13.1001688919 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2040 |
25 |
625 |
1 |
494600 |
13.1115046341 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2074 |
24 |
576 |
1 |
500175 |
13.1227133162 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2108 |
23 |
529 |
1 |
505750 |
13.133797755 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2142 |
22 |
484 |
1 |
511325 |
13.1447606748 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
2176 |
21 |
441 |
1 |
516900 |
13.1556047112 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2210 |
20 |
400 |
1 |
522475 |
13.1663324148 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
2244 |
19 |
361 |
1 |
528050 |
13.1769462552 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
2278 |
18 |
324 |
1 |
533625 |
13.1874486241 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
2312 |
17 |
289 |
1 |
539200 |
13.1978418386 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
2346 |
16 |
256 |
1 |
544775 |
13.2081281444 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
2380 |
15 |
225 |
1 |
655575 |
13.3932679921 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3000 |
14 |
196 |
1 |
661150 |
13.401736022 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3034 |
13 |
169 |
1 |
666725 |
13.410132946 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3068 |
12 |
144 |
1 |
672300 |
13.4184599485 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3102 |
11 |
121 |
1 |
677875 |
13.4267181841 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3136 |
10 |
100 |
1 |
683450 |
13.4349087796 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3170 |
9 |
81 |
1 |
689025 |
13.4430328338 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3204 |
8 |
64 |
1 |
694600 |
13.4510914193 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3238 |
7 |
49 |
1 |
700175 |
13.4590855828 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3272 |
6 |
36 |
1 |
705750 |
13.4670163461 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3306 |
5 |
25 |
1 |
711325 |
13.474884707 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
3340 |
4 |
16 |
1 |
results
SUMMARY OUTPUT |
Regression Statistics |
Multiple R |
0.9998465151 |
R Square |
0.9996930537 |
Adjusted R Square |
0.9996227119 |
Standard Error |
0.0084735828 |
Observations |
60 |
ANOVA |
|
df |
SS |
MS |
F |
Significance F |
Regression |
11 |
11.22482849 |
1.0204389536 |
14211.9240726682 |
2.45938154696426E-80 |
Residual |
48 |
0.003446477 |
0.0000718016 |
Total |
59 |
11.2282749671 |
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 95.0% |
Upper 95.0% |
Halverson and Palmquist correction |
Intercept |
11.892214007 |
0.2872673828 |
41.3977176688 |
3.24949295705939E-39 |
11.3146245608 |
12.4698034531 |
11.3146245608 |
12.4698034531 |
Bed0 |
-0.4634856209 |
0.0137703379 |
-33.6582606477 |
4.83688490084012E-35 |
-0.4911727246 |
-0.4357985172 |
-0.4911727246 |
-0.4357985172 |
-0.3709129395 |
Bed1 |
-0.1696613886 |
0.007758989 |
-21.8664297041 |
1.32527530344873E-26 |
-0.1852618725 |
-0.1540609047 |
-0.1852618725 |
-0.1540609047 |
-0.1560494605 |
Bed3 |
0.0000082026 |
0.0057365058 |
0.0014298966 |
0.9988650342 |
-0.0115258087 |
0.0115422139 |
-0.0115258087 |
0.0115422139 |
0.0000082026 |
Bedge4 |
0.1088997018 |
0.0099596859 |
10.9340498564 |
0 |
0.088874423 |
0.1289249807 |
0.088874423 |
0.1289249807 |
0.1150505072 |
Bath15 |
0.021267993 |
0.0090238407 |
2.3568670764 |
0.0225574467 |
0.0031243559 |
0.0394116301 |
0.0031243559 |
0.0394116301 |
0.0214957687 |
Bath2 |
0.0152165246 |
0.0054959804 |
2.7686642715 |
0.0079758698 |
0.0041661218 |
0.0262669274 |
0.0041661218 |
0.0262669274 |
0.0153328854 |
Bath3 |
-0.0080779166 |
0.0057272912 |
-1.4104253358 |
0.164861998 |
-0.0195934007 |
0.0034375674 |
-0.0195934007 |
0.0034375674 |
-0.0080453779 |
Sqft |
0.000471539 |
0.0000999666 |
4.7169666405 |
0.0000209855 |
0.0002705428 |
0.0006725351 |
0.0002705428 |
0.0006725351 |
Age |
0.0104562467 |
0.0033440741 |
3.1267987415 |
0.0029994122 |
0.003732539 |
0.0171799543 |
0.003732539 |
0.0171799543 |
AgeSq |
-0.0001647862 |
0.0000130876 |
-12.5909794975 |
8.01593886273043E-17 |
-0.0001911007 |
-0.0001384718 |
-0.0001911007 |
-0.0001384718 |
Strutype |
-0.0143459911 |
0.005727557 |
-2.5047312873 |
0.0157035012 |
-0.0258620095 |
-0.0028299728 |
-0.0258620095 |
-0.0028299728 |
-0.0142435777 |
raw data
Price |
beds |
baths |
sq feet |
year built |