MaxQDA

For this assignment, assume the role of a researcher in the qualitative analysis phase of the study. The data are gathered imported into MAXQDA for analysis. At this point, there are parent codes and sub-codes. However, the software requires human intervention to move past codes to categories and subsequently themes. Clearly, a category of “interview guide topics” cannot be used in the presentation of research results. In this assignment, you will access MAXQDA and practice creating categories and themes.

General Requirements:

Use the following information to ensure successful completion of the assignment:

  • Refer to the document, “Using MAXQDA Assignment Resource,” located in the Course Materials for this topic.
  • This assignment requires the use of MAXQDA software available in the DC. A link to the software is in the Course Materials for this topic.
  • Refer to “Getting Started Video Tutorial” found in the Course Materials for this topic.
  • Doctoral learners are required to use APA style for their writing assignments. The APA Style Guide is located in the Student Success Center.
  • This assignment uses a rubric. Please review the rubric prior to beginning the assignment to become familiar with the expectations for successful completion.
  • This assignment requires that at least two additional scholarly research sources related to this topic, and at least one in-text citation from each source be included.
  • You are required to submit this assignment to Turnitin. Refer to the directions in the Student Success Center.

Directions:

Complete this assignment according to the directions in the document, “Using MAXQDA Assignment Resource.”

College of Doctoral Studies

 

RES-850 Using MaxQDA Assignment Resource

 

MAXQDA is a software tool designed to assist in the analysis of qualitative data. It should be noted that MAXQDA does not create codes or perform analyses independently; the researcher must create the necessary codes and manipulate the data to gain insight. However, MAXQDA simplifies the analysis process.

After completing this assignment, you should plan to further explore MAXQDA to gain familiarity with this software. It will be used in subsequent courses.

 

Follow the steps below to complete the assignment, “Using MAXQDA.”

1. Download the MAXQDA software from DC. When prompted, enter the license code found on the MAXQDA page in DC. When the download is complete, open MAXQDA.

2. View the “Getting Started Tutorial” in MAXQDA (see below). The video is approximately 7 minutes in length. This video also demonstrates the code system. Though the assignment will not require the importing of documents, this video offers a good idea of how the software program works. A more in-depth webinar, “Optional: MAXQDA Webinar,” is also available in the Loud Cloud course materials for this topic.

 

 

 

 

 

 

3. Download the “MAXQDA Getting Started Guide” as shown below. Review the Guide to gain an understanding of how the interface works as well as explanation of the standard toolbar and the key words you will need to understand prior to reviewing data. Pay close attention to pages 20-25 as they show how to code and activate documents.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. In the MAXQDA Welcome dialogue window, click “Open Examples”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Then, click on the file “ENG/Life Satisfaction.mx18”, the first project file listed under the drop-down menu. If prompted, do not back up the project (click “No.”)

 

 

 

 

 

 

 

 

 

 

 

6. Once you have opened “Eng/Life Satisfaction.mx18” by clicking on it, help is available by clicking on the icon in the top toolbar and then clicking the question mark “Help” icon at the far right of the page near the top.

 

 

 

 

 

 

 

 

 

 

 

 

7. From the top toolbar in MaxQDA, click on “Home.” Explore the available views (Document System, Code System, Document Browser, and Retrieved Segments). Pay close attention to the different data sources that were included in this sample project: documents, a focus group, Twitter data, videos, and images.

 

 

 

Views

 

 

 

 

 

 

 

 

 

 

8. In the Document System view, right Click on “Documents” (under the tool bar), and activate all documents. The activated document titles change color. This allows the user to click on a document, open it in a new browser window, and see all comments from one person in the document saved under his or her name. A right click on the focus group transcript permits opening the actual transcript.

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Double click on Joanna’s name to open Joanna’s transcript and take a screen shot for this assignment.

 

 

 

10. In the Code System view, right click on “Code System” (under the toolbar), and activate all codes. The code titles activated will change color. This displays codes, such as People, Assessments, Interviews Main Topics, Word to story prompts, Autocodes, and Autocode Twitter Data. These are preliminary codes the researcher has assigned to his/her data.

 

 

 

 

 

 

 

 

 

11. Under the Codes, you will see subcodes. For example, look at the code “People.” Underneath the code, you see subcodes of grandparents, parents, siblings, friends, and partner. These subcodes represent some further analysis the researcher has done. Click on the arrow to the left of the other codes to reveal subcodes for each.

 

 

 

 

12. Click on “Interviews Main Topics” code to reveal the subcodes. Then, double click on the “Career” subcode. Finally, click on Jon’s name to reveal the paragraph coded for Jon under the career subcode. Take a screenshot of Jon’s paragraph-long quote on this topic for the assignment.

 

 

 

 

 

 

13. At this point, the researcher has developed codes and subcodes. Review all of the codes and subcodes developed thus far. Right now, all of the information is at the code or subcode levels. Researchers need to find a way to collapse these subcodes into common groups, or categories. Study each of the subcodes by double clicking on the subcode and reading the pertinent information. (See bullet point 11 where you opened Jon’s interview for the Career subcode.) Read through these until you obtain an understanding of what that particular subcode represents. Once you have an understanding of the subcodes, think critically to create and define at least three categories. A category should capture commonalities that group several subcodes together. For example, under the Assessments code, we see subcodes: negative, neutral, positive, unclear/ambivalent. Under the Word to story prompts code, we see subcodes of sadness, happiness, success and failure. Perhaps one category might be “Emotions.”

 

 

14. Create two categories that collapse the subcodes in Interviews Main Topics and two categories that collapse the subcodes in People,. Write a brief rationale (250-500 words) describing how you moved from the larger list of subcodes to each category. Note: Your chosen categories do not have to encompass all of the subcodes; but, each category must use a minimum of two subcodes.

 

In summary, to complete this project you need the following deliverables:

 

1. A screenshot of Joanna’s transcript.

2. A screenshot of Jon’s paragraph-long quote.

3. The four categories developed from subcodes.

4. A rationale for the process you used to collapse the subcodes into groups, or categories.

 

 

© 2018. Grand Canyon University. All Rights Reserved.

 

© 2018. Grand Canyon University. All Rights Reserved.

What are the guiding principles of ‘environmental sustainability’?

1Running head:SPACE COLONIZATION

Introduction

This paper analyzes the possibility of the existence of an Earth-sized exoplanet that

orbits its star within the specific habitable zone, which may point to evidence for

support of life due to the existence of earth-like conditions. This research seeks to

establish if there exist other Earth-like planets besides earth, that prove similar life-

supporting factors are present. Such knowledge can enlighten the scientific

community on possibilities of interstellar travel as well as possibilities of other life

forms and structures apart from that on Earth, creating stepping stones and new

avenues for space colonization (NASA/Jet Propulsion Laboratory (2020). Which can

facilitate the overall achievement of long term environmental sustainability on Earth,

as humans can utilize space as a resource?

Scientific resources

During this research, I will utilize primary resources such as dissertations, lab reports,

and journal articles because such sources provide authentic information. Secondary

resources that shall be used here will include article reviews and books that will

further clarify information from primary sources (University at Albany, n.d.).

Also, tertiary resources will be important for the ultimate organization and retrieval of

both primary and secondary information that would facilitate this research. Such

resources will include abstracts or summaries of primary and secondary resources,

databases, and indices which will provide actual citations and identify documents

with relevant information on authors, books, and article titles as well as publisher

information (Woodley, 2020).

2Running head:SPACE COLONIZATION

Research question

Is it possible for this Earth-sized habitable-zoned planet to be the beginning of space

colonization?

Audiences

The main audiences targeted by this research are the scientific community as well as

the general public.

Because the scientific community considers sustainability important, there will be

expert analysis and opinions on the research issue. If action is not taken regarding

sustainability, humans face risks to food and water security, biodiversity among other

risks on our limited resources (Vessuri, 2016).

Also, the public should be informed because researchers have understood the role that

the general public audience plays toward overall progress in addressing our issues.

When a public audience is well informed, governments and authorities, specializing in

space study and exploration can be driven toward action by funding, sponsoring, and

allocating further studies and resources aimed at investigating earthlike planets. This

way, everyone will have a better picture of our current environment sustainability

practices concerning chances for interstellar travel and space colonization (Brownell,

Price, & Steinman, 2013).

Kepler-1649c

3Running head:SPACE COLONIZATION

According to The American Astronomical Society, Kepler-1649 c has been identified

as a low-mass planet similar to earth, which revolves around the star Kepler-1649.

This planet gets from its star, an incident flux similar to Earth’s, and has the

equilibrium temperature of a circumstellar habitable zone making it closely similar to

Earth. Initially, it was classified by the Keppler pipeline as false positive, but upon

inspection of Keppler’s false positives, it was reported as a possible Earth-sized

habitable-zoned planet (The American Astronomical Society, 2020).

Kepler-1649c is approximately 300 light-years away from Earth, and boasts a similar

size to Earth, with almost similar temperature and comparable light exposure like

Earths. This discovery has sparked hope for a second Earth and the possibility of

other forms of life in our galaxy (NASA/Jet Propulsion Laboratory (2020).

Why message can be tailored to the public scientific community

Currently, there is a growing concern on huger, terrorism, diseases, environmental

pollution, global warming, weather changes, and general scarcity of resources and

clean water. As we understand, space colonization can offer solutions to such

problems in terms of technology and sociologically. Solutions from space exploration

and colonization especially for earthlike planets will be beneficial to the majority, the

world as a whole (Siegfried, 2003).

This means that we can develop our message to ensure that the scientific community

can understand the need for space exploration toward possible solutions to current

global issues indicated and overpopulation concerns on Earth.

4Running head:SPACE COLONIZATION

Due to the nature of this research, most individuals in our scientific community will

be able to understand terminologies used, research methodologies, and sources of

relevant data as collected and analyzed leading to an effective understanding of the

message.

In this case, the issue of sustainability is the core, and the overall global concern for

environmental sustainability is growing. Worsening conditions pose threats to

humanity and general security is at threat. The shift in focus on renewable energy,

climate management, water, and biodiversity protection is slowly enabling us to

mitigate threats from traditional practices that affect sustainability (Sullivan, 2008).

Such measures should be coupled with alternatives such as space exploration and

colonization of Earth-sized habitable-zoned planet. This way, we can achieve long

term sustainability in a fast, effective manner.

The following sustainability principles guide the development of this research:

Sustainable development: The theory of sustainable development insinuates the need

for undertaking development initiatives while considering sustainability, so we can

meet current needs without compromising the abilities for future generations

(Tearfund, 2009).

5Running head:SPACE COLONIZATION

Feasible ways organizations can achieve this is by undertaking initiatives for

alternative resources especially through space exploration and initiatives seeking to

utilize celestial resources like ones potentially on Kepler-1649c.

Currently, humans have established that there are vast amounts of minerals in space

that can be utilized commercially through observations, remote sensing, and space

probes making space and celestial bodies a utility for sustainable development

(Sachdeva, 2018).

Understanding water resources: Since life on earth needs water, we should consider

future implications from the misuse of water and its pollution. As the population

grows, water will be more scarce, which may lead to disputes over control of such

important resources (Tearfund, 2009). Since Kepler-1649c, an earth-like planet may

have water. Future habitation of this planet by humans may minimize the long term

impact on our earth’s water resources.

Time and space inter-dependencies: organizations must understand how our universe

is interconnected and that resources we use can affect places far away while activities

in faraway places can affect us. Therefore, sustainability requires developing

sustainability standards globally (Sullivan, 2008). If Earth-sized habitable-zoned

planets like Kepler-1649c support life, activities there can be used to develop our

earth and assist in overall sustainability.

Triple-bottom line: Emphasizes on balanced economic, environmental, and social

considerations. As we look toward meeting our financial needs, we must equally

6Running head:SPACE COLONIZATION

improve our environment and develop our social well-being (Sullivan, 2008).

Kepler-1649c can create an avenue for income generation for firms, corporations, and

other institutions while promoting Earth’s environmental conservation efforts and if

by a chance, life exists in Kepler-1649c, humans will have new relations with

extraterrestrial life forms bringing a need for an inter galactical government.

Equity: Sustainability requires equitable allocation and distribution of resources,

opportunities, life quality, and wealth across countries currently and in the future. It is

therefore our responsibility to ourselves, others, and future generations so that our

descendants can access both resources and utilities for better life quality (Sullivan,

2008). Space exploration and colonization provides good grounds for equality since

current resources, wealth, and opportunities are not distributed equally

Conclusion

The research paper asked the question whether it is possible for Earth-sized habitable-

zoned planet can lead to the beginning of space colonization. From the research

question we identified a hypothesis, that is, space colonization is possible on Earth-

sized habitable-zoned planets. Testing the hypothesis may begin by testing whether

the planet can support life by checking factors such as energy sources and its

7Running head:SPACE COLONIZATION

atmosphere. Understanding whether these habitable-zoned planets support life or not

will aid in determining whether they can be explored further and allow colonization.

Though it may difficult to ascertain that these Earth-sized habitable-zoned planets

support life and can be colonized, scientists should measure the atmosphere of these

planets so that they can explore them further to determine their sustainability of

human life. According to NASA/Jet Propulsion Laboratory (2020), there are scientists

currently trying to find the mass of such planet’s so that they can determine whether

they are rocky like Earth. This knowledge would add more insight to scientists on

whether or not they can sustain life. Space exploration of these Earth-sized habitable-

zoned planets would shed more light on this too. Therefore, having this knowledge

would help future researchers on whether these Earth-sized habitable-zoned planets

are ready for space colonization.

References

Brownell, S., Price, J. & Steinman, L. (2013). Science Communication to the General

Public: Why We Need to Teach Undergraduate and Graduate Students this Skill as

8Running head:SPACE COLONIZATION

Part of Their Formal Scientific Training. Retrieved from: https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC3852879/

NASA/Jet Propulsion Laboratory. (2020, April 16). Earth-size, habitable-zone planet

found hidden in early NASA Kepler data: While the star it orbits is much smaller than

our Sun, it gets about 75 percent of the sunlight Earth does. ScienceDaily. Retrieved

May 31, 2020, from www.sciencedaily.com/releases/2020/04/200416105650.htm

Sachdeva, G. (2018). Commercial Mining of Celestial Resources: Case Study of U.S.

Space Laws. Retrieved from: https://www.tandfonline.com/doi/abs/

10.1080/14777622.2018.1534312?scroll=top&needAccess=true&journalCode=fast20

Siegfried, W. H. (2003). Space technology and applications int.forum-staif 2003:

Conf.on Thermophysics in Microgravity; Commercial/Civil Next Generation Space

Transportation; Human Space Exploration. AIP Conference Proceedings, Volume 654,

pp. 1270-1278 (2003). Retrieved from: https://ui.adsabs.harvard.edu/abs/2003AIPC..

654.1270S/abstract

Sullivan, W. (2008). What are the guiding principles of ‘environmental sustainability’?

Retrieved from: https://news.illinois.edu/view/6367/198803

Tearfund, (2009). Environmental sustainabilityResponding to changes in the

environment and climate. https://learn.tearfund.org/~/media/files/tilz/publications/

roots/english/environmental_sustainability/roots_13_e.pdf

The American Astronomical Society, (2020). A Habitable-zone Earth-sized Planet

Rescued from False Positive Status. Retrieved from: https://iopscience.iop.org/article/

10.3847/2041-8213/ab84e5

9Running head:SPACE COLONIZATION

University at Albany, (n.d.). Primary and Secondary Sources for Science. Retrieved

from: https://library.albany.edu/infolit/resource/prisci

Vessuri, H. (2016). Science for Sustainable Development (Agenda 2030). Retrieved

from: http://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Montevideo/pdf/

PolicyPapersCILAC-CienciaAgenda203-EN.pdf

Woodley, M. (2020). Three Types of Resources. Retrieved from: https://

libguides.merrimack.edu/research_help/Sources

RR Communication Case Study

Below are two case study due by Saturday. I need 2 copies of each case study. It should be done in APA format. I have attached the sample APA format document.

RR Communication Case Study

Read the RR Communications Case Study on pages 156-159 in the textbook. Answer Discussion Questions 1-3 at the end of the Case Study. Your responses must be complete, detailed and in APA format. See the sample assignment for expected format and length. The grading rubric is included below. 4-5 pages

Textbook: https://www.studypool.com/uploads/questions/273853/20171015084849it_strategy_issues_and_practice___james_d._mckeen__1_.pdf

Natonstate Insurance Case Study

Read the Nationstate Case Study on pages 160-164 in the textbook. Answer Discussion Questions 1-2 at the end of the Case Study. Your responses must be complete, detailed and in APA format. See the sample assignment for expected format and length. The grading rubric is included below. 4-5 pages

Textbook: https://www.studypool.com/uploads/questions/273853/20171015084849it_strategy_issues_and_practice___james_d._mckeen__1_.pdf

Running Head: THE SCIENTIFIC METHOD APPLIED TO DIGITAL FORENSICS 1

 

THE SCIENTIFIC METHOD APPLIED TO DIGITAL FORENSICS 7

 

 

 

 

 

 

 

 

 

The Scientific Method Applied To Digital Forensics

 

 

 

 

 

by student name

 

 

 

 

 

 

 

 

 

 

Professor D. Barrett

University

Course

Todays date

 

 

 

 

 

 

 

Abstract

 

Computer forensics is the process of digital investigation combining technology, the science of discovery and the methodical application of legal procedures. Judges and jurors often do not understand the inner workings of computers and rely on digital forensics experts to seek evidence and provide reliable, irrefutable testimony based on their findings. The scientific method is the process of diligent, disciplined discovery where a hypothesis is formed without bias, and analysis and testing is performed with the goal of effectively proving or disproving a sound hypothesis. When investigative teams do not follow standard investigative procedures it can lead to inappropriate and inaccurate evidentiary presentations that are extremely difficult for non-technical participants to refute. The practitioners of digital forensics can make strides to measure and improve the accuracy of their findings using the scientific method. This paper includes a summary of the scientific method as applied to the emerging and growing field of digital forensics and presents details of a specific case where both the prosecution and defense would have benefitted greatly from the use of this proven method of discovery and analysis. Findings can only be deemed reasonably conclusive when the scientific process is correctly applied to an investigation, findings are repeatable and verifiable, and where both the evidence collected and the tools used are subject to the utmost scrutiny.

 

The Scientific Method Applied To Digital Forensics

 

The forensic analyst and investigator must use a unique combination of technical, investigative, and scientific skills when approaching a forensic case. Most adults remember the Scientific Method from their middle school science class as a set of six steps beginning with stating a problem, gathering information, forming a hypothesis, testing the hypothesis, analyzing the data and drawing conclusions that either support or do not support the hypothesis. Peisert, Bishop, & Marzullo (2008) note that the term computer forensics has evolved to mean “scientific tests of techniques used with the detection of crime” yet note that many academic computer scientists also use the term to refer to the “process of logging, collecting, auditing or analyzing data in a post hoc investigation”. The necessity to maintain chain of custody requires methodical and detailed procedures, as does the formulation of a legitimate and unbiased hypothesis and conclusion using the scientific method. Since many judges and jurors assume that computer forensic evidence is as “reliable and conclusive” as it is depicted on television, the legal system is unaware of the volatile nature of computer forensics investigations and the significance of a scientific approach to evidence gathering and analysis (Peisert et al., 2008).

The Scientific Process as Applied to Computer Forensics

Peisert et al. (2008) discuss in detail the need for the use of the scientific method in forensic investigations, not only for the process of discovery and analysis of evidence, but for measuring the accuracy of the forensic tools used in an investigation. Casey (2010) agrees, and cautions that evidence must be compared to known samples so that investigators better understand the scope and context of the evidence that is discovered or presented and to better understand the output of forensic tools. Casey (2010) further elaborates that the scientific method is a powerful tool for forensic investigators who must be neutral fact finders rather than advocates for one side of a case or the other.

The process of creating a hypothesis and completing experiments to prove or disprove them allows an investigator to gain a concrete understanding of the digital evidence or mere traces of evidence under analysis. Casey (2010) also notes that while there is no ethical requirement to do so and may be impractical, a thorough investigative practice would consider investigation of alternate scenarios presented by defense.

Forensic examination tools can contain bugs, or behave differently with various types of data and forensic images. Casey (2010) recommends that investigators examine evidence at both the physical and logical layers since both methods can provide unique perspectives, and the physical layer may not yield deleted, corrupted or hidden data. Suspects with limited technical experience can rename image files with different extensions not used for images, and those with more technical knowledge can use advanced steganography techniques to embed data within other data in an attempt to defy detection.

The 2004 case of State of Connecticut v. Julie Amero in Norwich, Connecticut is one where the scientific method was clearly missing from both the defense and prosecution. Eckelberry, Dardick, Folkerts, Shipp, Sites, Stewart, & Stuart (2007) completed a comprehensive post-trial analysis of the evidence as provided to the defense and discovered very different evidentiary results using a structured scientific approach to their investigation. Amero was a substitute elementary teacher accused of displaying pornographic images that appeared on pop-up’s to her students from what ultimately was proven to be a spyware-infected school computer. The credibility of the legal system was compromised and the prosecution made a numerous incorrect assumptions based on results provided from inadequate forensic tools and poor investigative techniques (Eckelberry et al., 2007).

The computer that Amero was using in her classroom was a Windows 98 machine running Internet Explorer 6.0.2800 and a trial version of Cheyenne AntiVirus that had not received an update in several years. The content filtering at the school had expired several months prior to the incident. The prosecution presented non-factual statements that may easily have been misconstrued by a non-technical jury and that likely caused a guilty verdict. The false testimony made by the school IT specialist indicated that the virus protection was updated weekly when in fact they were not since computer logs and the signatures clearly showed that virus updates were no longer supported by the vendor. The updates may have been performed but against files that had no new updates for many months. The IT Manager who testified also incorrectly claimed that adware was not able to generate pornography and especially not “endless loop pornography”. This information was received as a fact by the non-technical jury and incredibly not refuted by the defense. The detective for the prosecution also stated that his testimony was based completely on the product ComputerCop which the vendor admits is incapable of determining if a website was visited purposefully or unintentionally. The forensic detective astoundingly admitted that he did not examine the computer for the presence of adware (Eckelberry et al., 2007, p. 7-10).

The case against Amero was largely based on testimony stating that she deliberately visited the offensive pornographic websites and that the sites visited subsequently showed the links in red. The post-trial investigative team quickly verified that the ‘sites visited’ color setting in Internet Explorer on the suspect machine was set to “96,100,32” which is a greenish-gray color. One of the web pages that the defendant allegedly visited had an HTML override to highlight one of the links presented in red and was not colored based on a deliberate visit to the site. According to Eckelberry et al. (2007) the page in question was not discovered in “any of the caches or Internet history files or the Internet History DAT files. The post-trial investigative team through meticulous investigation and use of the scientific method were able to present facts that were “exculpatory evidence showing that the link was never clicked on by the defendant” or any other person, and disproved most of the statements made by the forensics examiner and the witnesses for the prosecution (Eckelberry et al., 2007, p. 12-14).

The prosecution testimony stated that there was no evidence of uncontrollable pop ups found on the suspect machine, however, the post-trial investigative team discovered irrefutable evidence that the page in question was loaded twenty-one times in one second using a computer forensics tool called X-Ways Trace. Eckleberry et al. (2007) detail many other instances where testimony was haphazard and discovered that a Halloween screen saver was the source of the adware that presented the continuous stream of pornographic sites. The chain of custody was also compromised in that the disk image was from a Dell PC but the defense witness saw a Gateway PC stored at the police station. The officer reportedly seized a computer but the police report contradicts this and states that only a drive was taken (Eckelberry et al., 2007, p. 14-17).

The case described and investigated by Eckelberry et al. (2007) resembles a staged blunder designed as a humorous sample case for beginning forensic students to discuss. The case was however very real and even though the defendant was eventually acquitted she suffered lasting harm from the notoriety based on the initial conviction of contributing to the delinquency of minors. If the prosecution or defense had investigated the evidence using the scientific method and maintained a credible chain of custody, or at least used clear critical thinking while performing a thorough forensic investigation this case may never have gone to trial. It wasted the time and resources of judge, jury, and countless other participants in the trial and permanently damaged an innocent victim (Eckelberry et al., 2007).

Conclusion

The scientific method is a process that allows confidence in a hypothesis when it can be subjected to repeated identical tests. The use of the scientific method not only provides a methodical structure to a forensic investigation, it lends credibility to a case in the very nature of the steps used to document and diligently test any given hypothesis. The case independently investigated post-trial by Eckelberry et al. (2007) was performed by a team of trained experts who were well aware of the necessity of the methodical requirements and necessity of the scientific method of discovery. Their findings proved that the suspect was in fact a victim of poorly maintained computers by a local Connecticut school system, that the forensic expert and witnesses who testified in the case were untrained and uninformed and used inadequate tools for the investigation. Cases such as State of Connecticut v. Julie Amero illustrate the importance of using the scientific method, and the necessity of proper training in the art and science of digital forensics.

 

 

References

Carrier, B. (2002, October). Open Source Digital Forensics Tools: The Legal Argument. In @ Stake Inc. Retrieved September 8, 2011, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.7899&rep=rep1&type=pdf

Casey, E. (Ed.). (2010). Handbook of Digital Forensics and Investigation (Kindle ed.). Burlington, MA: Elsevier, Inc.

Eckelberry, A., Dardick, G., Folkerts, J., Shipp, A., Sites, E., Stewart, J., & Stuart, R. (2007, March 21). Technical Review of the Trial Testimony of State of Connecticut vs. Julie Amero. Retrieved September 9, 2011, from http://www.sunbelt-software.com/ihs/alex/julieamerosummary.pdf

Nelson, B., Phillips, A., & Steuart, C. (2010). Guide to Computer Forensics and Investigations (4th ed.). Boston, MA: Course Technology, Cengage Learning.

Peisert, S., Bishop, M., & Marzullo, K. (2008, April). Computer Forensics in Forensis. Retrieved September 8, 2011, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.3949&rep=rep1&type=pdf

Anthropology Genetic Reproducing Life

Genetics: Reproducing Life and Producing Variation

CLARK SPENCER LARSEN

E S S E N T I A L S O F PHYSICAL ANTHROPOLOGY SECOND EDITION

CHAPTER

3

 

*

Copyright ©2013 W.W. Norton, Inc.

Genetics: Reproducing Life and Producing Variation

  • Questions addressed in this chapter:
  • What is the genetic code?
  • What does the genetic code (DNA) do?
  • How does understanding genes help us understand variation?

The last chapter ended with a brief introduction to DNA. But, what is DNA? What is it made of? And how can a small molecule like DNA ‘code’ for all of the traits in a living organism? We will address these and other questions in this chapter. Ultimately, what we are doing in this chapter is understanding how the genetic code (DNA) results in variation, because it is this variation that natural selection can act upon and lead to evolutionary changes. We will start by looking at the fundamental unit of all life on Earth: the cell. Inside each cell, the DNA code is structured into packages known as chromosomes. We will see how the DNA molecule can copy itself so that each cell in an organism’s body contains the same DNA information. We will then look at how DNA codes for proteins, which all living organisms are made of. Finally, we will look at a concrete example of how DNA impacts our lives by examining human blood types. Though we have to dive into the microscopic world, do not lose sight of the big picture: DNA is a code for making proteins, and we are made of proteins. If the DNA slightly changes (through mutation, which we met in the last chapter), the protein changes, and thus the organism can change.

*

Copyright ©2013 W.W. Norton, Inc.

The Cell: Prokaryotes

  • Prokaryotes
  • 3.5 billion years old
  • Single-celled bacteria
  • No nucleus or organelles

All living organisms are made of cells; they are the basic units of life. There are many, many organisms that are made of just one cell, and many (including you) that are made of trillions of cells. All of life can be divided into two big categories, depending on the kind of cell they have. The first kind are organisms called prokaryotes. Prokaryotes are single-celled bacteria without nuclei or any special structures called organelles. They often have structures shown here in this image, like a cell wall, an outer membrane, a cytoplasm within which the DNA resides, and they often have locomotor structures like a flagellum. On this slide is a microscopic image of a prokaryotic cell that we have all heard of: Escherichia coli (E. coli), which lives in the guts of many mammals, including humans. Though prokaryotic cells live within us, and have been instrumental factors in driving human evolution, we will turn now to the cells we are made of: eukaryotic cells.

*

Copyright ©2013 W.W. Norton, Inc.

The Cell: Eukaryotes

    • Eukaryotes
    • 1.2 billion years ago.
    • Some single-celled; all multicellular organisms (including humans)
    • DNA contained in a nucleus
    • Organelles

 

All animals, plants, fungi, and many single-celled organisms called protists are made of eukaryotic cells. These cells have a nucleus that contains DNA, and often have membrane-bound parts of the cell called organelles. These include chloroplasts (found in plants) and mitochondria, which help produce the molecular energy that powers cellular processes. Notice in this image that the eukaryotic cell is a bit more complicated than a prokaryotic cell. The microscopic image here is of kidney cells, which clearly have a nucleus, a membrane keeping the components of the cell contained, and a fluid within the cell called a cytoplasm.

*

Copyright ©2013 W.W. Norton, Inc.

The Cell: Somatic Cells and Gametes

  • Somatic cells
  • Body cells
  • Full DNA (humans: 46 chromosomes)
  • Mitosis
  • Gametes
  • Eggs (ova) and sperm
  • Half DNA (humans; 23 chromosomes)
  • Meiosis

There are two types of eukaryotic cells in all animals and plants: somatic cells and gametes. Somatic cells, also called body cells, are found all over the body. Shown in the above image are the somatic cells found in the (clockwise from top left) brain, blood, bone, and skin. Somatic cells all contain a complete copy of the organism’s DNA. For example, in humans, somatic cells have all of the DNA packed in 46 chromosomes. Somatic cells also replicate through a process called mitosis, which we will learn about in just a moment. At the bottom right is an image of the other kind of eukaryotic cells: gametes. The large round cell is called an egg, or an ova. The small wiggly structures surrounding the egg are sperm. These are gametes. They contain only half of the organism’s DNA (23 chromosomes in humans) and replicate through a process known as meiosis.

*

Copyright ©2013 W.W. Norton, Inc.

Chromosomes

  • DNA packaged in chromosomes
  • Chromosome number varies by species
  • Number of chromosomes does not correlate with complexity

Since we just mentioned chromosomes, it is worth examining chromosome number in a bit more detail. Humans have 46 chromosomes in our somatic cells. 23 of these came from our mother, and 23 from our father, for a grand total of 46. But, this number, 46, is not special at all. Other apes, like chimpanzees, have 48 chromosomes. Some primates have fewer chromosomes, like the colobus monkey which has 44. Some organisms we would consider to be less complex than us have fewer chromosomes, like the house fly with 12 or the salamander with 24. But, plenty of organisms have more than we have, like the potato with 48, the camel with 70, or algae, which has 148 chromosomes. Classifying organisms by the number of chromosomes they have would be like organizing books in a library based on the number of pages they have, or by the color of its jacket cover. It wouldn’t make sense. What matters are not the number of chromosomes an organism has, but the similarity in DNA that is packaged in the chromosomes. For instance, humans and chimpanzees share about 98% of their DNA. This is remarkable, and, in some ways, indicates how important 2% of a difference can be.

*

Copyright ©2013 W.W. Norton, Inc.

DNA: The Blueprint of Life

• DNA

Genes

Chromosomes

Genome

• Nuclear DNA:

homoplasmic

• Mitochondrial DNA:

heteroplasmic

Most likely, you have all heard of DNA, and have probably heard that it is the “blueprint,” or “recipe,” or “code” for life? But, how does this work? It helps first to understand the structure of DNA, and to understand how it is packaged in your cells. It is estimated that there is six feet worth of DNA in every cell in your body. Six feet!? If cells are microscopic, how can this be? As shown in this image, the DNA molecule is wound up into compact structures that we have already encountered: chromosomes. Sections of that DNA specifically code for a specific protein in the body: These are called genes. The genome is all of the genes put together in all of the chromosomes. The DNA that is in the nucleus of our cells is called homoplasmic, meaning it is more or less the exact same in every cell in our body. But, the nucleus is not the only place in a cell that contains DNA. An organelle called the mitochondria also contains DNA. Mitochondrial DNA (mtDNA) is much, much smaller; it only contains 37 genes. And these genes are only inherited from your mother, meaning they can be used to trace one’s maternal lineage (called a matriline). Unlike nuclear DNA, mitochondrial DNA can differ from cell to cell, making it heteroplasmic.

*

Copyright ©2013 W.W. Norton, Inc.

DNA: The Blueprint of Life

  • DNA structure
  • Sugar
  • Phosphate
  • Nucleotide base
  • Adenine (A)
  • Thymine (T)
  • Guanine (G)
  • Cytosine (C)
  • A with T
  • C with G
  • CAAAT
  • GTTTA

 

We are finally ready to discuss what DNA actually is. It is a molecule; in fact, a very simple one. DNA is made of three things: a type of sugar, a phosphate group, and a nucleotide base pair. The sugar and phosphate form the backbone of the long DNA molecule and these do not vary along the chain. What varies along the chain are the nucleotide base pairs. These bases can be one of four types: adenine (A), thymine (T), guanine (G) and cytosine (C). You can think of DNA as a ladder with the sugar and phosphates forming the uprights, and the bases forming the rungs. The rungs are made of two base pairs that cling together using hydrogen bonds. Critical to understanding DNA is the fact that the base pairs do not randomly cling to each other. Instead, A only clings to T, and C only clings to G. These are called complementary bases. What this means is, if you know one side of the DNA chain, you know the other. If a DNA sequence is CAAAT, the other side MUST be GTTTA. Though any two humans may have over 99% of their DNA base pair order identical, there are, of course, differences. Differences in these single nucleotide regions are called SNPs (pronounced “snips” and short for single nucleotide polymorphisms). These are some of the areas of the genome that can be used to solve crimes using DNA evidence since they can vary from one individual to another.

*

Copyright ©2013 W.W. Norton, Inc.

The DNA Molecule: Replicating the Code

The very structure of DNA explains how it is so easily, and so accurately, replicated. When a cell is going to divide, it copies its entire genome. Remember those nucleotide base pairs? Well, there are 3 billion of them to copy each time a cell divides. And cells divide all the time. It happened when you went from a single fertilized zygote to two cells, to four, eight, sixteen and onwards until you were several trillion cells worth of newborn baby. It continues to happen as old cells divide to form replacement cells. Each time, the DNA faithfully replicates. DNA replicates so easily and accurately because of those As, Gs, Cs, and Ts we discussed a moment ago. A double stranded DNA molecule is unwound by enzymes, and the hydrogen bonds connecting the complementary base pairs are broken. What results are two template strands that have so-called sticky ends. Free floating nucleotide base pairs in the nucleus of the cell (which are acquired through the foods we eat- which have their own DNA), bind to the template strands following the rule of base pairs: A goes with T and C goes with G. In this case CTAT is separated from GATA. These sticky ends become templates to form two new strands that are identical to one another. Again, it is the very structure of DNA that explains how copies of it can be made. We often say that the replication process produces identical copies of DNA, but that is not entirely true. Copying mistakes can occasionally occur- yet another source for genetic variation.

*

Copyright ©2013 W.W. Norton, Inc.

Chromosome Types

  • Homologous pairs
  • Autosomes (22 pairs)
  • Sex chromosomes (1 pair)
  • X and Y
  • Male determines sex
  • Karyotype

 

Before we get into the nuts and bolts of mitosis, let’s consider those chromosomes one last time. In order to make sure that each copy of the full sequence of DNA gets into each cell, the chromosomes must pair up and replicate. 23 of these chromosomes were inherited from the mother, and 23 from the father and each chromosome number (1 to 23) are different in their length and the genes they contain. These chromosomes pair up into matching, or homologous pairings, in the somatic cells. Though these chromosome pairs (shown in the top image) may look identical, they may very well contain different versions of a gene (known as alleles), since one chromosome was inherited from the mother and the other from the father. 22 of the 23 homologous pairs of chromosomes are what are referred to as autosomes. The other pair determines the sex of the individual and are appropriately named the sex chromosomes X and Y. Females have two X chromosomes, one inherited from their mother and one from their father. Males have an X and a Y—the X from their mother and the Y from their father. Because females have two X chromosomes, they can only contribute an X in the egg cell they produce. Because the male has both an X and a Y, there is a 50-50 chance that a sperm will contain an X or a Y. It is therefore true that the male “determines” the sex of a child by either contributing an X (and therefore producing a female) or a Y (and therefore producing a male), though of course this is not a conscious decision the sperm cells make. One way to visualize the homologous chromosomes is to produce what is called a karyotype—this is shown in the bottom right of the slide. Notice the 22 homologous pairs of autosomes numbered according to their size, and last the sex chromosomes. Based on what you see here, is this karyotype from a female or a male?

 

LET THE STUDENTS THINK ABOUT THIS AND THEN DISCUSS (THIS IS A FEMALE KARYOTYPE SINCE THERE ARE TWO X CHROMOSOMES)

*

Copyright ©2013 W.W. Norton, Inc.

Mitosis

You started as a single fertilized egg, called a zygote. It had 46 chromosomes. Cells with this full set of chromosomes (46) are called diploid. As we’ll soon see, cells with half the number of chromosomes (23) are called haploid. These are the egg and sperm cells, and there is a very obvious reason that they have half the number of chromosomes, which we’ll encounter in just a moment. But, back to that zygote. During embryological development, this little zygote divided to form 2, 4, 8, 16, 32, 64, and eventually trillions of cells. These cells soon form tissues and organs in a process known as embryological development. If the DNA divided as the cells do, your chromosomes would go from 46 to 23 to 11.5 to 5.75. Of course, this did not happen. Instead, every cell contains 46 chromosomes. This occurs because, as we already discussed, DNA can replicate itself and does so before each cell division so that the cell goes from 46 chromosome to 92 before dividing into two cells, each with 46 chromosomes. The process by which this occurs is called mitosis.

*

Copyright ©2013 W.W. Norton, Inc.

Mitosis

As shown in this figure, mitosis starts with a single diploid cell that has 23 pairs or homologous chromosomes (or 46 chromosomes). These chromosomes duplicate by unwinding their DNA and attaching free nucleotide bases to the template strands in the manner already discussed. After chromosome duplication, the cells technically have 92 chromosomes, which all line up in the middle of the cells so that one full set is on one side and another full set is on the other side of the cell midline. The cell pulls apart into two daughter cells, each with identical DNA. The microscopic image is of skin cells dividing into two daughter cells. Each of these cells has 23 pairs of homologous chromosomes (or 46 total).

*

Copyright ©2013 W.W. Norton, Inc.

Meiosis

  • Haploid—23 chromosomes (no pairs)
  • Recombination via crossing-over
  • Haplotypes

Translocations and nondisjunctions

 

If an egg cell had 46 chromosomes and a sperm had 46 chromosomes, the resulting zygote would have 92 chromosomes. This simply would not work. So, gametes have to divide up the DNA a bit differently than somatic cells do. Instead of having a full copy of the organism’s DNA, gametes are haploid, meaning they only contain one chromosome from each pair of chromosomes. This one can be inherited from the mother or the one inherited from the father. With 23 chromosomes, the number of different combinations is exceptionally high, meaning that each egg and each sperm cell contains a unique combination of genes from the organisms’ mother and father. The process by which this occurs is called meiosis. Meiosis starts the same way as mitosis. The DNA replicates and the homologous chromosomes pair up. The cells then divide into two identical daughter cells, just as happens in mitosis. However, unlike mitosis, the cells then divide again, resulting in four daughter cells each with 23 chromosomes, but no pairs. Right before that final cell division, the homologous chromosomes can recombine their chromosomes in a process called crossing-over. A chunk of chromosome 2 from the mother’s line can switch with a chunk of chromosome 2 from the father’s line. So, not only are the 23 chromosomes in the gametes a random assortment of chromosomes from the mother and from the father, but within each chromosome there will be a combination of genes from the individual’s mother and father. Genes that are close together on a chromosome therefore tend to move together and cluster together. These clusters of genes are called haplotypes, which can be used to assess the history of genetic lineages. If chunks of DNA are exchanged on non-homologous chromosomes (called translocations) diseases such as leukemia can result. If the chromosomes fail to divide, the resulting gametes can have too few or too many chromosomes. Too few can result in a monosomy, and too many, a trisomy. Down syndrome is an example of a trisomy, in which there are three rather than two copies of chromosome 21.

*

Copyright ©2013 W.W. Norton, Inc.

Law of Independent Assortment

We’ve obviously been learning about genetics. But, in the last chapter, we learned about Mendel and his genetics experiments on pea plants. What do the two have to do with each other? This is a very important slide that demonstrates how these concepts are linked to one another. Here is another Punnett square in which two pea plants with identical genotypes and phenotypes are crossed. Each plant has yellow seeds in a green pod, and each plant is heterozygous. Remember that this means that both plants have each allele for pod color and seed color, but that the dominant allele is expressed. Breeding identical plants together like this, most would expect that the offspring should be identical to their parents, but genetics does not work that way. During meiosis, the top pea plant will produce a gamete with either big G or little g combined with either big Y or little y. Each has an equal chance of being produced resulting in four possible combinations of genes in the gametes: GY, Gy, gY, and gy. The same applies for the plant on the left of the Punnett square. Now, when these gametes are combined together in all possible ways to produce zygotes, the resulting baby plants will have the genotypes shown on the Punnett square, and a 9:3:3:1 ratio of phenotypes. Nine will have green pods and yellow seeds like the parents, three will have green pods and green seeds, three will have yellow pods and yellow seeds, and one will have yellow pods and green seeds (the exact OPPOSITE of what the parents had!). Notice that having one particular color of pea pod had nothing to do with the color of the seed. This is known as the law of independent assortment. Notice also that the rules of genetics and the process of meiosis produces plentiful variation—the raw material for natural selection to act on.

*

Copyright ©2013 W.W. Norton, Inc.

Law of Independent Assortment

But, those are pea plants. What about humans? Here is an example that applies more to you and I. Suppose the gene for hair color is on the small chromosome and the gene for eye color is on the large chromosome. The blue allele on the small chromosome represents blond hair and on the large chromosome represents blue eyes. The red allele on the small chromosome represents brown hair and on the large chromosome brown eyes. Both parents are heterozygous and, we’ll say for argument sake, brown eyes and hair are dominant, meaning that both parents have brown hair and brown eyes. The parent on the left, we’ll call a female, produces four eggs through meiosis. Because of the law of independent assortment, the alleles for hair and eye color are independent from one another, producing two eggs that pass on the alleles for brown hair and brown eyes and two eggs with the alleles for blond hair and blue eyes. Just as likely is what happens with the male. He produces four sperm cells, two with brown eyes and blond hair and two with blue eyes and brown hair. Choose one egg and one sperm and combine them together. What do you get? Now choose another? Notice that there will be a mixture of these features. Some of the offspring will have blond hair and brown eyes; some will have brown hair and blue eyes. Keep in mind that these combinations were not present in the parents.

Some of you may be saying that hair color and eye color are NOT independent; that they do seem to be present together (brown with brown; blond with blue). You are of course right. One of the reasons for this is that some of the genes that code for these traits are in fact on the same chromosome. The bottom image shows how genes close to one another on the same chromosome will not follow the law of independent assortment and will instead by linked to one another. This is called linkage.

*

Copyright ©2013 W.W. Norton, Inc.

DNA and Protein Synthesis

But, how does DNA cause a seed to be yellow or hair to be brown? When we talk about DNA as a code, what do we actually mean? Besides replicating itself, the other critically important thing DNA does is to code for proteins. Proteins are what bodies are made of. There are seven types of proteins described here. Some, called enzymes, help with chemical reactions, such as the protein lactase that helps break down the lactose sugar in milk. Others are structural proteins, like the keratin that makes up our hair and nails, or the collagen that helps make up bone—these are shown in this image to the right. There are gas transport proteins like hemoglobin, which transports oxygen throughout the body. Antibodies, which help fight diseases, are proteins. Hormones like insulin, which helps regulate the metabolism of sugar and fats in the body are proteins. Muscles are comprised of the mechanical proteins actin and myosin. Finally, protein can be of the nutrient-form, like ovalbumin, which is found in egg whites. Proteins are critical for the normal functioning of an organism. So, how does DNA code for these proteins? First, it is important to recognize that proteins are made of amino acids. There are 20 different kinds of amino acids; 12 of these humans can manufacture; the other 8 have to be eaten and are therefore called essential amino acids. These 20 different amino acids can combine together into chains of various lengths and different properties. These properties are what makes a protein like keratin different from a protein like hemoglobin.

*

Copyright ©2013 W.W. Norton, Inc.

Transcription and Translation

  • Transcription
  • DNA transcribed into mRNA in the nucleus of the cell
  • Translation
  • mRNA translated into amino acid chain at the ribosomes

Protein synthesis, or the process by which a DNA code is turned into a chain of amino acids, occurs in cells. First the DNA code is read by enzymes, producing a molecule called messenger RNA. This process, in which messenger RNA is created from a DNA code is called transcription. The messenger RNA then leaves the nucleus of the cell and enters the cytoplasm. It binds to ribosomes, which are organelles that facilitate the translation of messenger RNA into a chain of amino acids, which ultimately form a protein. Let’s look in more detail how this actually happens.

*

Copyright ©2013 W.W. Norton, Inc.

Transcription

Just like during DNA replication, the DNA is unwound, or unzipped, by enzymes. However, unlike replication, only one of the strands of DNA is used during transcription. Also, unlike replication, only a specific section of the DNA is unwound; this region is called a gene. The unwound DNA strand serves as a template for making a single-stranded molecule of messenger RNA. RNA is very similar to DNA, but instead of using A, G, C, and T as base pairs, RNA uses A, G, C, and U. U stands for Uracil and it binds to adenine (A), just like thymine (T) does in DNA. As is shown here, if the gene has the sequence TACTC, the messenger RNA molecule will be AUGAG and so on. Once the gene is fully transcribed, the messenger RNA molecule leaves the nucleus and finds ribosomes in the cytoplasm of the cell.

*

Copyright ©2013 W.W. Norton, Inc.

Translation

Once messenger RNA binds to a ribosome, translation of the code into amino acids can begin. This process occurs in threes. Three nucleotides, called a codon, are read by the ribosome. These are “read” by matching a complementary anticodon to the codon. For instance, if the messenger RNA codon is AUG, then the anticodon has to be UAC since those are the three nucleotides that are complementary to the codon. Importantly, these anticodons are attached to a specific amino acid, in this case methionine, in a structure called a transfer RNA (tRNA). The next three nucleotides in the codon are AGU, which match with the anticodon UCA, which is attached to the amino acid serine. This goes on and one, in groups of three, until the last codon (UAG) , which is the stop sequence. The amino acid chain is then released into the cytoplasm. The amino acid chain folds into a three-dimensional structure, or bonds with other 3-D proteins, which give these proteins their specific properties. What we have described here happens in only a small percentage of the human genome. In fact, only about 5% of the total genome is composed of structural genes that code for proteins, or regulatory genes that turn genes on and off. We will turn to these genes next.

*

Copyright ©2013 W.W. Norton, Inc.

Regulatory Genes

  • On/off switches for genes
  • Marfan syndrome
  • Chicken teeth
  • Human hair
  • Lactose intolerance or persistence

Regulatory genes can be thought of as on/off switches, or, perhaps more accurately, dimmer switches. Regulatory genes determine if a gene is on or off, and can regulate the amount of protein produced, and when. For instance, if the genes controlling connective tissue growth are left on a bit longer during development, what can result are longer, thinner fingers as is shown in this image. This is characteristic of a disease called Marfan syndrome. Regulatory genes have also allowed us to understand major evolutionary events. For instance, paleontological evidence demonstrates that modern birds evolved from a group of feathered dinosaurs. But, anyone who has visited a science museum knows that dinosaurs have teeth. Birds do not. Where did their teeth go? Scientists have recently discovered that birds still have the structural genes to make teeth. But, the regulatory genes controlling those structural genes have been turned off. A similar thing has happened with human body hair. Humans have less body hair than other primates. We still have the genes for full body hair coverage, but these genes have been down-regulated. Similarly, all baby mammals have the ability to digest milk. This is because they produce the enzyme lactase, which breaks down lactose. However, these genes are turned off in most adult mammals. However, some humans have lactose persistence, meaning that the genes are not turned off and they can continue to digest milk as adults. Those who retain the typical mammalian condition of losing lactase production into adulthood are said to be lactose intolerant. Notice that natural selection can act upon the products of structural genes, but can also operate on the products of variation in regulatory genes. In fact, research on human and chimpanzee genomes have discovered that while our structural genes are very similar, there are important differences in those regulatory genes.

*

Copyright ©2013 W.W. Norton, Inc.

Homeotic (Hox) Genes

One of the best examples of regulatory genes are those of the homeotic, or Hox, family of genes. These are master switches that determine the general form of an animal’s body. Notice that whether you are a human, a mouse, or a fruit fly, heads are where heads should be, bodies are where bodies should be, and limbs are where limbs should be. Why is this? Researchers have discovered that a group of genes, called Hox genes, regulate the position of the major body parts during embryological development. What was amazing to researchers was that the very same genes regulate this process of body formation in organisms as different as flies, mice, and humans. Small changes in how long these genes are switched on, or where they are expressed, can result in differences in overall body form. For instance, the genes for the neck region are positioned differently in birds and snakes giving bird long necks and snakes short necks (but long bodies). The Hox genes that determine forelimb and finger length are switched on for a longer period of development in bats, compared to other mammals. Again, selection can favor the products of variation in regulatory genes as effectively as structural genes.

*

Copyright ©2013 W.W. Norton, Inc.

Law of Segregation and Codominance

Let’s look at one more Punnett square to consider how variations in specific genes can result in even more possible combinations of traits. As we have already discussed, the mother and father contribute equally to the genetic makeup of the offspring. This is known as the Law of segregation. Consider this example in which a pure red sweet pea is crossed with a pure white sweet pea. The offspring in the first generation will all be heterozygous, meaning that they will inherit the red allele from one parent and the white allele from the other. If the resulting flowers are all red, then the red allele is said to be dominant over the white allele. But, what if the flowers are all pink? This can happen, it means that these two alleles are both expressed, neither is dominant over the other, and they are said to be codominant. If these flowers care crossed, the offspring will be a combination of pure red (genotype big R big R), pure white (genotype little r little r), and pink, or shown here as hybrid white.

*

Copyright ©2013 W.W. Norton, Inc.

Polymorphisms: Variations in Specific Genes

  • Exercises:
  • Can mother with blood type A and father with blood type B have a baby with blood type O?
  • Can a man with blood type AB be the father of a baby with blood type O?

Let’s apply these principles to humans again. Human blood type is a great example of a trait with multiple alleles. A person can be blood type O, A, B, or AB. Because there can be more than one kind of blood type, this is referred to as a polymorphic trait. But, what do these blood types mean in terms of genetics? Every person has two blood type alleles (one from mom and one from dad). These can be allele A, B, or O. The A allele codes for a protein that we call A. The B allele codes for a protein that we call B. If someone has the A allele on one chromosome and the B allele on the other, they are blood type AB. This is because these alleles are codominant and both blood proteins are produced. So, do people with the O allele make an O protein? No. In fact, they do not make a protein at all. This is why the O blood type is referred to as the universal donor. Because there are no proteins on the surface of the cells, the recipient of this blood type will not attack these cells. Someone with blood type AB does not make antibodies against either A or B, and therefore can receive blood from any blood type. However, someone with blood type A will make antibodies against B and cannot receive that blood type without fatal complications. Likewise, someone with blood type O makes antibodies against all other blood types, and cannot receive any other blood type except O. Let’s look at this again in the context of genetics. Can parents with blood type A and blood type B have a baby with blood type O? The answer is yes. Draw a Punnett square to try to work this out. Can either of the parents be homozygous, or must they both be heterozygous? Try this one: Can a man with blood type AB be the father of a child with blood type O? Why or why not?

*

Copyright ©2013 W.W. Norton, Inc.

Polygenic Traits and Pleiotropy

  • Many traits polygenic
  • Height, skin color
  • Many genes pleiotropic
  • Sickle-cell
  • All traits a product of genes AND environment
  • Height and nutrition

By this point, you are probably realizing that genetics is complicated business. But, it is MUCH more complicated than I’ve described in this lecture. Many traits are polygenic, meaning that multiple genes are responsible for the phenotype observed. For instance, a person’s height, or skin coloration can be influenced by hundreds of different genes. In addition, these and many other traits can be highly influenced by the environment. For instance, height can be strongly impacted by nutrition. Remember that natural selection can only work on traits that are passed from generation to generation, so quantifying the role that genetics has in shaping a particular phenotype can be quite important in determining the role of natural selection in shaping it. Complicating matters even further is the reality that the same gene can influence many different phenotypes. The sickle-cell gene, for instance, influences both the individual’s ability to combat malaria as well as the ability to transport oxygen through the body. It turns out, most traits are both polygenic and pleiotropic (modeled on the bottom right), making genetics a fascinating, but quite complicated, science.

*

Copyright ©2013 W.W. Norton, Inc.

 

 

Genetics: Reproducing

Life and Producing Variation

*

 

 

 

Clark • Spencer • Larsen

Essentials of Physical Anthropology

Second Edition

CHAPTER

This concludes the Lecture PowerPoint presentation for:

3

For more learning resources, please visit the
StudySpace site for Essentials of Physical Anthropology
http://books.wwnorton.com/studyspace

 

*

 

*

The last chapter ended with a brief introduction to DNA. But, what is DNA? What is it made of? And how can a small molecule like DNA ‘code’ for all of the traits in a living organism? We will address these and other questions in this chapter. Ultimately, what we are doing in this chapter is understanding how the genetic code (DNA) results in variation, because it is this variation that natural selection can act upon and lead to evolutionary changes. We will start by looking at the fundamental unit of all life on Earth: the cell. Inside each cell, the DNA code is structured into packages known as chromosomes. We will see how the DNA molecule can copy itself so that each cell in an organism’s body contains the same DNA information. We will then look at how DNA codes for proteins, which all living organisms are made of. Finally, we will look at a concrete example of how DNA impacts our lives by examining human blood types. Though we have to dive into the microscopic world, do not lose sight of the big picture: DNA is a code for making proteins, and we are made of proteins. If the DNA slightly changes (through mutation, which we met in the last chapter), the protein changes, and thus the organism can change.

*

All living organisms are made of cells; they are the basic units of life. There are many, many organisms that are made of just one cell, and many (including you) that are made of trillions of cells. All of life can be divided into two big categories, depending on the kind of cell they have. The first kind are organisms called prokaryotes. Prokaryotes are single-celled bacteria without nuclei or any special structures called organelles. They often have structures shown here in this image, like a cell wall, an outer membrane, a cytoplasm within which the DNA resides, and they often have locomotor structures like a flagellum. On this slide is a microscopic image of a prokaryotic cell that we have all heard of: Escherichia coli (E. coli), which lives in the guts of many mammals, including humans. Though prokaryotic cells live within us, and have been instrumental factors in driving human evolution, we will turn now to the cells we are made of: eukaryotic cells.

*

All animals, plants, fungi, and many single-celled organisms called protists are made of eukaryotic cells. These cells have a nucleus that contains DNA, and often have membrane-bound parts of the cell called organelles. These include chloroplasts (found in plants) and mitochondria, which help produce the molecular energy that powers cellular processes. Notice in this image that the eukaryotic cell is a bit more complicated than a prokaryotic cell. The microscopic image here is of kidney cells, which clearly have a nucleus, a membrane keeping the components of the cell contained, and a fluid within the cell called a cytoplasm.

*

There are two types of eukaryotic cells in all animals and plants: somatic cells and gametes. Somatic cells, also called body cells, are found all over the body. Shown in the above image are the somatic cells found in the (clockwise from top left) brain, blood, bone, and skin. Somatic cells all contain a complete copy of the organism’s DNA. For example, in humans, somatic cells have all of the DNA packed in 46 chromosomes. Somatic cells also replicate through a process called mitosis, which we will learn about in just a moment. At the bottom right is an image of the other kind of eukaryotic cells: gametes. The large round cell is called an egg, or an ova. The small wiggly structures surrounding the egg are sperm. These are gametes. They contain only half of the organism’s DNA (23 chromosomes in humans) and replicate through a process known as meiosis.

*

Since we just mentioned chromosomes, it is worth examining chromosome number in a bit more detail. Humans have 46 chromosomes in our somatic cells. 23 of these came from our mother, and 23 from our father, for a grand total of 46. But, this number, 46, is not special at all. Other apes, like chimpanzees, have 48 chromosomes. Some primates have fewer chromosomes, like the colobus monkey which has 44. Some organisms we would consider to be less complex than us have fewer chromosomes, like the house fly with 12 or the salamander with 24. But, plenty of organisms have more than we have, like the potato with 48, the camel with 70, or algae, which has 148 chromosomes. Classifying organisms by the number of chromosomes they have would be like organizing books in a library based on the number of pages they have, or by the color of its jacket cover. It wouldn’t make sense. What matters are not the number of chromosomes an organism has, but the similarity in DNA that is packaged in the chromosomes. For instance, humans and chimpanzees share about 98% of their DNA. This is remarkable, and, in some ways, indicates how important 2% of a difference can be.

*

Most likely, you have all heard of DNA, and have probably heard that it is the “blueprint,” or “recipe,” or “code” for life? But, how does this work? It helps first to understand the structure of DNA, and to understand how it is packaged in your cells. It is estimated that there is six feet worth of DNA in every cell in your body. Six feet!? If cells are microscopic, how can this be? As shown in this image, the DNA molecule is wound up into compact structures that we have already encountered: chromosomes. Sections of that DNA specifically code for a specific protein in the body: These are called genes. The genome is all of the genes put together in all of the chromosomes. The DNA that is in the nucleus of our cells is called homoplasmic, meaning it is more or less the exact same in every cell in our body. But, the nucleus is not the only place in a cell that contains DNA. An organelle called the mitochondria also contains DNA. Mitochondrial DNA (mtDNA) is much, much smaller; it only contains 37 genes. And these genes are only inherited from your mother, meaning they can be used to trace one’s maternal lineage (called a matriline). Unlike nuclear DNA, mitochondrial DNA can differ from cell to cell, making it heteroplasmic.

*

We are finally ready to discuss what DNA actually is. It is a molecule; in fact, a very simple one. DNA is made of three things: a type of sugar, a phosphate group, and a nucleotide base pair. The sugar and phosphate form the backbone of the long DNA molecule and these do not vary along the chain. What varies along the chain are the nucleotide base pairs. These bases can be one of four types: adenine (A), thymine (T), guanine (G) and cytosine (C). You can think of DNA as a ladder with the sugar and phosphates forming the uprights, and the bases forming the rungs. The rungs are made of two base pairs that cling together using hydrogen bonds. Critical to understanding DNA is the fact that the base pairs do not randomly cling to each other. Instead, A only clings to T, and C only clings to G. These are called complementary bases. What this means is, if you know one side of the DNA chain, you know the other. If a DNA sequence is CAAAT, the other side MUST be GTTTA. Though any two humans may have over 99% of their DNA base pair order identical, there are, of course, differences. Differences in these single nucleotide regions are called SNPs (pronounced “snips” and short for single nucleotide polymorphisms). These are some of the areas of the genome that can be used to solve crimes using DNA evidence since they can vary from one individual to another.

*

The very structure of DNA explains how it is so easily, and so accurately, replicated. When a cell is going to divide, it copies its entire genome. Remember those nucleotide base pairs? Well, there are 3 billion of them to copy each time a cell divides. And cells divide all the time. It happened when you went from a single fertilized zygote to two cells, to four, eight, sixteen and onwards until you were several trillion cells worth of newborn baby. It continues to happen as old cells divide to form replacement cells. Each time, the DNA faithfully replicates. DNA replicates so easily and accurately because of those As, Gs, Cs, and Ts we discussed a moment ago. A double stranded DNA molecule is unwound by enzymes, and the hydrogen bonds connecting the complementary base pairs are broken. What results are two template strands that have so-called sticky ends. Free floating nucleotide base pairs in the nucleus of the cell (which are acquired through the foods we eat- which have their own DNA), bind to the template strands following the rule of base pairs: A goes with T and C goes with G. In this case CTAT is separated from GATA. These sticky ends become templates to form two new strands that are identical to one another. Again, it is the very structure of DNA that explains how copies of it can be made. We often say that the replication process produces identical copies of DNA, but that is not entirely true. Copying mistakes can occasionally occur- yet another source for genetic variation.

*

Before we get into the nuts and bolts of mitosis, let’s consider those chromosomes one last time. In order to make sure that each copy of the full sequence of DNA gets into each cell, the chromosomes must pair up and replicate. 23 of these chromosomes were inherited from the mother, and 23 from the father and each chromosome number (1 to 23) are different in their length and the genes they contain. These chromosomes pair up into matching, or homologous pairings, in the somatic cells. Though these chromosome pairs (shown in the top image) may look identical, they may very well contain different versions of a gene (known as alleles), since one chromosome was inherited from the mother and the other from the father. 22 of the 23 homologous pairs of chromosomes are what are referred to as autosomes. The other pair determines the sex of the individual and are appropriately named the sex chromosomes X and Y. Females have two X chromosomes, one inherited from their mother and one from their father. Males have an X and a Y—the X from their mother and the Y from their father. Because females have two X chromosomes, they can only contribute an X in the egg cell they produce. Because the male has both an X and a Y, there is a 50-50 chance that a sperm will contain an X or a Y. It is therefore true that the male “determines” the sex of a child by either contributing an X (and therefore producing a female) or a Y (and therefore producing a male), though of course this is not a conscious decision the sperm cells make. One way to visualize the homologous chromosomes is to produce what is called a karyotype—this is shown in the bottom right of the slide. Notice the 22 homologous pairs of autosomes numbered according to their size, and last the sex chromosomes. Based on what you see here, is this karyotype from a female or a male?

 

LET THE STUDENTS THINK ABOUT THIS AND THEN DISCUSS (THIS IS A FEMALE KARYOTYPE SINCE THERE ARE TWO X CHROMOSOMES)

*

You started as a single fertilized egg, called a zygote. It had 46 chromosomes. Cells with this full set of chromosomes (46) are called diploid. As we’ll soon see, cells with half the number of chromosomes (23) are called haploid. These are the egg and sperm cells, and there is a very obvious reason that they have half the number of chromosomes, which we’ll encounter in just a moment. But, back to that zygote. During embryological development, this little zygote divided to form 2, 4, 8, 16, 32, 64, and eventually trillions of cells. These cells soon form tissues and organs in a process known as embryological development. If the DNA divided as the cells do, your chromosomes would go from 46 to 23 to 11.5 to 5.75. Of course, this did not happen. Instead, every cell contains 46 chromosomes. This occurs because, as we already discussed, DNA can replicate itself and does so before each cell division so that the cell goes from 46 chromosome to 92 before dividing into two cells, each with 46 chromosomes. The process by which this occurs is called mitosis.

*

As shown in this figure, mitosis starts with a single diploid cell that has 23 pairs or homologous chromosomes (or 46 chromosomes). These chromosomes duplicate by unwinding their DNA and attaching free nucleotide bases to the template strands in the manner already discussed. After chromosome duplication, the cells technically have 92 chromosomes, which all line up in the middle of the cells so that one full set is on one side and another full set is on the other side of the cell midline. The cell pulls apart into two daughter cells, each with identical DNA. The microscopic image is of skin cells dividing into two daughter cells. Each of these cells has 23 pairs of homologous chromosomes (or 46 total).

*

If an egg cell had 46 chromosomes and a sperm had 46 chromosomes, the resulting zygote would have 92 chromosomes. This simply would not work. So, gametes have to divide up the DNA a bit differently than somatic cells do. Instead of having a full copy of the organism’s DNA, gametes are haploid, meaning they only contain one chromosome from each pair of chromosomes. This one can be inherited from the mother or the one inherited from the father. With 23 chromosomes, the number of different combinations is exceptionally high, meaning that each egg and each sperm cell contains a unique combination of genes from the organisms’ mother and father. The process by which this occurs is called meiosis. Meiosis starts the same way as mitosis. The DNA replicates and the homologous chromosomes pair up. The cells then divide into two identical daughter cells, just as happens in mitosis. However, unlike mitosis, the cells then divide again, resulting in four daughter cells each with 23 chromosomes, but no pairs. Right before that final cell division, the homologous chromosomes can recombine their chromosomes in a process called crossing-over. A chunk of chromosome 2 from the mother’s line can switch with a chunk of chromosome 2 from the father’s line. So, not only are the 23 chromosomes in the gametes a random assortment of chromosomes from the mother and from the father, but within each chromosome there will be a combination of genes from the individual’s mother and father. Genes that are close together on a chromosome therefore tend to move together and cluster together. These clusters of genes are called haplotypes, which can be used to assess the history of genetic lineages. If chunks of DNA are exchanged on non-homologous chromosomes (called translocations) diseases such as leukemia can result. If the chromosomes fail to divide, the resulting gametes can have too few or too many chromosomes. Too few can result in a monosomy, and too many, a trisomy. Down syndrome is an example of a trisomy, in which there are three rather than two copies of chromosome 21.

*

We’ve obviously been learning about genetics. But, in the last chapter, we learned about Mendel and his genetics experiments on pea plants. What do the two have to do with each other? This is a very important slide that demonstrates how these concepts are linked to one another. Here is another Punnett square in which two pea plants with identical genotypes and phenotypes are crossed. Each plant has yellow seeds in a green pod, and each plant is heterozygous. Remember that this means that both plants have each allele for pod color and seed color, but that the dominant allele is expressed. Breeding identical plants together like this, most would expect that the offspring should be identical to their parents, but genetics does not work that way. During meiosis, the top pea plant will produce a gamete with either big G or little g combined with either big Y or little y. Each has an equal chance of being produced resulting in four possible combinations of genes in the gametes: GY, Gy, gY, and gy. The same applies for the plant on the left of the Punnett square. Now, when these gametes are combined together in all possible ways to produce zygotes, the resulting baby plants will have the genotypes shown on the Punnett square, and a 9:3:3:1 ratio of phenotypes. Nine will have green pods and yellow seeds like the parents, three will have green pods and green seeds, three will have yellow pods and yellow seeds, and one will have yellow pods and green seeds (the exact OPPOSITE of what the parents had!). Notice that having one particular color of pea pod had nothing to do with the color of the seed. This is known as the law of independent assortment. Notice also that the rules of genetics and the process of meiosis produces plentiful variation—the raw material for natural selection to act on.

*

But, those are pea plants. What about humans? Here is an example that applies more to you and I. Suppose the gene for hair color is on the small chromosome and the gene for eye color is on the large chromosome. The blue allele on the small chromosome represents blond hair and on the large chromosome represents blue eyes. The red allele on the small chromosome represents brown hair and on the large chromosome brown eyes. Both parents are heterozygous and, we’ll say for argument sake, brown eyes and hair are dominant, meaning that both parents have brown hair and brown eyes. The parent on the left, we’ll call a female, produces four eggs through meiosis. Because of the law of independent assortment, the alleles for hair and eye color are independent from one another, producing two eggs that pass on the alleles for brown hair and brown eyes and two eggs with the alleles for blond hair and blue eyes. Just as likely is what happens with the male. He produces four sperm cells, two with brown eyes and blond hair and two with blue eyes and brown hair. Choose one egg and one sperm and combine them together. What do you get? Now choose another? Notice that there will be a mixture of these features. Some of the offspring will have blond hair and brown eyes; some will have brown hair and blue eyes. Keep in mind that these combinations were not present in the parents.

Some of you may be saying that hair color and eye color are NOT independent; that they do seem to be present together (brown with brown; blond with blue). You are of course right. One of the reasons for this is that some of the genes that code for these traits are in fact on the same chromosome. The bottom image shows how genes close to one another on the same chromosome will not follow the law of independent assortment and will instead by linked to one another. This is called linkage.

*

But, how does DNA cause a seed to be yellow or hair to be brown? When we talk about DNA as a code, what do we actually mean? Besides replicating itself, the other critically important thing DNA does is to code for proteins. Proteins are what bodies are made of. There are seven types of proteins described here. Some, called enzymes, help with chemical reactions, such as the protein lactase that helps break down the lactose sugar in milk. Others are structural proteins, like the keratin that makes up our hair and nails, or the collagen that helps make up bone—these are shown in this image to the right. There are gas transport proteins like hemoglobin, which transports oxygen throughout the body. Antibodies, which help fight diseases, are proteins. Hormones like insulin, which helps regulate the metabolism of sugar and fats in the body are proteins. Muscles are comprised of the mechanical proteins actin and myosin. Finally, protein can be of the nutrient-form, like ovalbumin, which is found in egg whites. Proteins are critical for the normal functioning of an organism. So, how does DNA code for these proteins? First, it is important to recognize that proteins are made of amino acids. There are 20 different kinds of amino acids; 12 of these humans can manufacture; the other 8 have to be eaten and are therefore called essential amino acids. These 20 different amino acids can combine together into chains of various lengths and different properties. These properties are what makes a protein like keratin different from a protein like hemoglobin.

*

Protein synthesis, or the process by which a DNA code is turned into a chain of amino acids, occurs in cells. First the DNA code is read by enzymes, producing a molecule called messenger RNA. This process, in which messenger RNA is created from a DNA code is called transcription. The messenger RNA then leaves the nucleus of the cell and enters the cytoplasm. It binds to ribosomes, which are organelles that facilitate the translation of messenger RNA into a chain of amino acids, which ultimately form a protein. Let’s look in more detail how this actually happens.

*

Just like during DNA replication, the DNA is unwound, or unzipped, by enzymes. However, unlike replication, only one of the strands of DNA is used during transcription. Also, unlike replication, only a specific section of the DNA is unwound; this region is called a gene. The unwound DNA strand serves as a template for making a single-stranded molecule of messenger RNA. RNA is very similar to DNA, but instead of using A, G, C, and T as base pairs, RNA uses A, G, C, and U. U stands for Uracil and it binds to adenine (A), just like thymine (T) does in DNA. As is shown here, if the gene has the sequence TACTC, the messenger RNA molecule will be AUGAG and so on. Once the gene is fully transcribed, the messenger RNA molecule leaves the nucleus and finds ribosomes in the cytoplasm of the cell.

*

Once messenger RNA binds to a ribosome, translation of the code into amino acids can begin. This process occurs in threes. Three nucleotides, called a codon, are read by the ribosome. These are “read” by matching a complementary anticodon to the codon. For instance, if the messenger RNA codon is AUG, then the anticodon has to be UAC since those are the three nucleotides that are complementary to the codon. Importantly, these anticodons are attached to a specific amino acid, in this case methionine, in a structure called a transfer RNA (tRNA). The next three nucleotides in the codon are AGU, which match with the anticodon UCA, which is attached to the amino acid serine. This goes on and one, in groups of three, until the last codon (UAG) , which is the stop sequence. The amino acid chain is then released into the cytoplasm. The amino acid chain folds into a three-dimensional structure, or bonds with other 3-D proteins, which give these proteins their specific properties. What we have described here happens in only a small percentage of the human genome. In fact, only about 5% of the total genome is composed of structural genes that code for proteins, or regulatory genes that turn genes on and off. We will turn to these genes next.

*

Regulatory genes can be thought of as on/off switches, or, perhaps more accurately, dimmer switches. Regulatory genes determine if a gene is on or off, and can regulate the amount of protein produced, and when. For instance, if the genes controlling connective tissue growth are left on a bit longer during development, what can result are longer, thinner fingers as is shown in this image. This is characteristic of a disease called Marfan syndrome. Regulatory genes have also allowed us to understand major evolutionary events. For instance, paleontological evidence demonstrates that modern birds evolved from a group of feathered dinosaurs. But, anyone who has visited a science museum knows that dinosaurs have teeth. Birds do not. Where did their teeth go? Scientists have recently discovered that birds still have the structural genes to make teeth. But, the regulatory genes controlling those structural genes have been turned off. A similar thing has happened with human body hair. Humans have less body hair than other primates. We still have the genes for full body hair coverage, but these genes have been down-regulated. Similarly, all baby mammals have the ability to digest milk. This is because they produce the enzyme lactase, which breaks down lactose. However, these genes are turned off in most adult mammals. However, some humans have lactose persistence, meaning that the genes are not turned off and they can continue to digest milk as adults. Those who retain the typical mammalian condition of losing lactase production into adulthood are said to be lactose intolerant. Notice that natural selection can act upon the products of structural genes, but can also operate on the products of variation in regulatory genes. In fact, research on human and chimpanzee genomes have discovered that while our structural genes are very similar, there are important differences in those regulatory genes.

*

One of the best examples of regulatory genes are those of the homeotic, or Hox, family of genes. These are master switches that determine the general form of an animal’s body. Notice that whether you are a human, a mouse, or a fruit fly, heads are where heads should be, bodies are where bodies should be, and limbs are where limbs should be. Why is this? Researchers have discovered that a group of genes, called Hox genes, regulate the position of the major body parts during embryological development. What was amazing to researchers was that the very same genes regulate this process of body formation in organisms as different as flies, mice, and humans. Small changes in how long these genes are switched on, or where they are expressed, can result in differences in overall body form. For instance, the genes for the neck region are positioned differently in birds and snakes giving bird long necks and snakes short necks (but long bodies). The Hox genes that determine forelimb and finger length are switched on for a longer period of development in bats, compared to other mammals. Again, selection can favor the products of variation in regulatory genes as effectively as structural genes.

*

Let’s look at one more Punnett square to consider how variations in specific genes can result in even more possible combinations of traits. As we have already discussed, the mother and father contribute equally to the genetic makeup of the offspring. This is known as the Law of segregation. Consider this example in which a pure red sweet pea is crossed with a pure white sweet pea. The offspring in the first generation will all be heterozygous, meaning that they will inherit the red allele from one parent and the white allele from the other. If the resulting flowers are all red, then the red allele is said to be dominant over the white allele. But, what if the flowers are all pink? This can happen, it means that these two alleles are both expressed, neither is dominant over the other, and they are said to be codominant. If these flowers care crossed, the offspring will be a combination of pure red (genotype big R big R), pure white (genotype little r little r), and pink, or shown here as hybrid white.

*

Let’s apply these principles to humans again. Human blood type is a great example of a trait with multiple alleles. A person can be blood type O, A, B, or AB. Because there can be more than one kind of blood type, this is referred to as a polymorphic trait. But, what do these blood types mean in terms of genetics? Every person has two blood type alleles (one from mom and one from dad). These can be allele A, B, or O. The A allele codes for a protein that we call A. The B allele codes for a protein that we call B. If someone has the A allele on one chromosome and the B allele on the other, they are blood type AB. This is because these alleles are codominant and both blood proteins are produced. So, do people with the O allele make an O protein? No. In fact, they do not make a protein at all. This is why the O blood type is referred to as the universal donor. Because there are no proteins on the surface of the cells, the recipient of this blood type will not attack these cells. Someone with blood type AB does not make antibodies against either A or B, and therefore can receive blood from any blood type. However, someone with blood type A will make antibodies against B and cannot receive that blood type without fatal complications. Likewise, someone with blood type O makes antibodies against all other blood types, and cannot receive any other blood type except O. Let’s look at this again in the context of genetics. Can parents with blood type A and blood type B have a baby with blood type O? The answer is yes. Draw a Punnett square to try to work this out. Can either of the parents be homozygous, or must they both be heterozygous? Try this one: Can a man with blood type AB be the father of a child with blood type O? Why or why not?

*

By this point, you are probably realizing that genetics is complicated business. But, it is MUCH more complicated than I’ve described in this lecture. Many traits are polygenic, meaning that multiple genes are responsible for the phenotype observed. For instance, a person’s height, or skin coloration can be influenced by hundreds of different genes. In addition, these and many other traits can be highly influenced by the environment. For instance, height can be strongly impacted by nutrition. Remember that natural selection can only work on traits that are passed from generation to generation, so quantifying the role that genetics has in shaping a particular phenotype can be quite important in determining the role of natural selection in shaping it. Complicating matters even further is the reality that the same gene can influence many different phenotypes. The sickle-cell gene, for instance, influences both the individual’s ability to combat malaria as well as the ability to transport oxygen through the body. It turns out, most traits are both polygenic and pleiotropic (modeled on the bottom right), making genetics a fascinating, but quite complicated, science.

*

 

*